1.1

Relations

Learning Objectives:

- To define a relation from a set to another set and study its representations.
- To study the properties of relations on a given set AND To practice the related problems

Representation of a Relation Let A and B be any two sets, not necessarily different. A (binary) relation from A to B is a subset of $A \times B$.

relation on A.

relation.

Solution:

x and y.

Solution:

Domain and Range

and range of R.

A to B is 2^{mn} .

Proof:

If R is a relation from A to B, then R is a set of ordered the ordered pairs of R come from A and B respectively. That is, for each pair $a \in A$ and $b \in B$, exactly one of the

pairs from $A \times B$, where each first and second element of

following is true: $(a,b) \in R$; we then say a is R-related to b, written a R b $(a,b) \notin R$; we then say a is not R-related to b

Sometimes R is a relation from a set A to itself, that is, R is

A relation can be represented in roster form: We represent

the relation by a set of ordered pairs, which satisfy a given

Example: Let $A = \{1,4\}, B = \{1,2\}$ and let R mean is the

The relation has an alternative representation known as

 $\{(x,y)|x\in A, y\in B, x---y\},\$

Example: Let $A = \{1,2,3\}$, $B = \{4,5\}$ and let R mean is less

The **domain** of a relation R from A to B is the set of all first

elements of the ordered pairs which belong to R, and so it

is a subset of A. The *range* of R is the set of all second

elements, and so it is a subset of B. It is a convention to

Example: Let $A = \{1,3,4,5,7\}, B = \{2,4,6,8\}$ and R be the

 $R = \{(1,2), (3,4), (5,6), (7,8)\}$

elements respectively, then the number of relations from

 $n(A) = m, n(B) = n \Rightarrow n(A \times B) = n(A) \cdot n(B) = mn$

= the number of subsets of $A \times B = 2^{n(A \times B)} = 2^{mn}$

There are a number of ways of representing the relations.

Let S be a relation on the set R of real numbers; that is, let

S be a subset of $R^2 = R \times R$. Since R^2 can be represented

by the set of points in the plane, we can represent S by

pictorial representation is called the graph of S.

we identify the relation with the equation.

plotting those points in the plane which belong to S. This

Frequently, the relation S consists of all ordered pairs of

real numbers which satisfy an equation, and in this case

Example: Consider the relation S defined by the equation

The relation S consists of all ordered pairs (x_0, y_0) which

satisfy the given equation. The graph of the equation is a

 $x^2 + y^2 = 25$

Suppose A and B are finite sets. A relation R from A to B

 $R = \{(1, y), (1, z), (3, y)\}$

The figure below represents this relation R by an arrow

A relation from A to B is said to be one to one if one

 $R = \{(p,4), (q,5), (r,6)\}$

One-to-one relation

A

A relation from A to B is said to be one to many if one

One-to-many relation

A relation from A to B is said to be many to one if many

 $R = \{(p,3), (q,3), (r,3), (s,4)\}$

Many-to-one relation

A relation from A to B is said to be *many to many* if many

elements of A are associated with the same element in B,

and also each member of A is associated with more than

 $R = \{(1, p), (1, q), (2, p), (2, r), (3, p), (3, r), (3, s), (3, t)\}$

Many-to-many relation

A relation from A to B is called **onto** if every element of B

 $R = \{(p, 1), (q, 1), (r, 1), (s, 2), (t, 3)\}\$

Many-to-one onto relation

A relation from A to B is called **into** if every element of B

Many-to-one into relation

inverse relation of R, denoted by R^{-1} , is a relation from B

 $R^{-1} = \{(y, x) \mid y \in B, x \in A, (x, y) \in R\}$

Example: Let $A = \{3,4,5,7\}, B = \{6,8,10,11,12\}, \text{ and } R \text{ be}$

 $R = \{6,8,10,12\}$. Therefore, R^{-1} is a relation from B to A

Domain of $R^{-1} = \{6,8,10,12\}$, Range of $R^{-1} = \{3,4,5\}$.

A relation R on a set A is called *reflexive* if each member

Example: If L be the set of all lines in a plane and R means

A relation R on a set A is called symmetric if xRy then yRx

Example: If L is the set of all lines in a plane and R stands

for is perpendicular to, then if a line x is perpendicular to

the line y, then y is also perpendicular to x, i.e.,

A relation R on a set A is called *transitive* if xRy and

In other words, if x is related to y, and y is related to z,

Example: Let L be a set of all lines in a plane and R stands

for is parallel to. If a line a is parallel to b and if b is parallel

 $xRy \Rightarrow yRx$. Thus R is a symmetric relation.

 $yRz \Rightarrow xRz$, i.e., $(x,y) \in R$, $(y,z) \in R \Rightarrow (x,z) \in R$

aRb and $c \Rightarrow aRc$.

is parallel to, then any line $x \in L$ is parallel to itself.

Therefore, xRx is true for every line $x \in L$. Thus R is

of A is in relation to itself, i.e., xRx, for all $x \in A$. Thus, it

 $R = \{(3,6), (3,12), (4,8), (4,12), (5,10)\}.$

 $R^{-1} = \{(6,3), (12,3), (8,4), (12,4), (10,5)\}$

the relation is a divisor of from A to B. Then

Solution: Domain of $R = \{3,4,5\}$ and range of

 R^{-1} is the relation is divisible by from B to A.

contains ordered pairs (x, x) for all $x \in A$.

Properties of Relations

i.e., $(x, y) \in R \Rightarrow (y, x) \in R$

then x is related to z.

Hence R is transitive.

the relation is reflexive.

Hence, the relation is transitive.

symmetric.

to c, then a is parallel to c. Thus,

It is noted that the domain of \mathbb{R}^{-1} is the range of \mathbb{R} and

range of R^{-1} is the domain of R.

Let R be the relation from a set A to a set B, then the

does not have a corresponding element in A.

Α

В

В

3

has a corresponding element in A.

is many-to-one and onto.

A

elements of A are associated with the same element of B.

В

5

member of A is associated with more than one member

 $R = \{(a, 1), (a, 2), (b, 4), (c, 6), (d, 8), (e, 9)\}$

В

is one-to-one, as shown below.

member of A is associated with one member of B only.

В

may be represented by an arrow diagram.

2

 $A = \{1,2,3\}$ to $B = \{x, y, z\}$:

Types of Relations

The relation

of B.

The relation

is one-to-many.

The relation

is many-to-one.

one member of B.

is many-to-many.

The relation

The relation

to A defined by

Note: $(R^{-1})^{-1} = R$

Find R^{-1} .

given by

reflexive.

diagram.

Example: Consider the following relation R from

circle having its center at the origin and radius 5.

 $x^2 + y^2 = 25$

relation is one less than from A to B. Find the domain,

Solution: From the set $A \times B$, we find that

range of $R = \{2,4,6,8\}$

Theorem: If A and B are finite sets with m and n

We have, R is a relation from A to $B \Leftrightarrow R \subseteq A \times B$.

Therefore, the number of relations from A to B

Geometrical representation

Hence, the domain of $R = \{1,3,5,7\}$ and

set builder form. In set builder form, the relation from

where the dashed line is the rule which associates

than. Express this relation in the set-builder form.

Then, $R = \{(x, y) | x \in A, y \in B, x < y\}$

call the set B as **co-domain** of R.

Here, $A \times B = \{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\}$

square of. Express this relation in roster form.

Then, $R = \{(1,1), (4,2)\}$

A to B is represented as:

Here, $A \times B = \{(1,1), (1,2), (4,1), (4,2)\}$

a subset of $A^2 = A \times A$. In such a case, we say that **R** is **a**

To study different types of relations

A relation R on a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive. That is, a relation R on a set A is said to be an equivalence relation on A if it satisfies the following conditions: xRx for all $x \in A$ i. ii. $xRy \Rightarrow yRx; x, y \in A$ xRy and $yRz \Rightarrow xRz$; $x, y, z \in A$. iii.

Example: In the set T of all triangles in a plane, show that

Solution: Here, R stand for is congruent to. Since a triangle

If a triangle $x \in T$ is congruent to the triangle $y \in T$, then y is

If $x, y, z \in T$ and if x is congruent to y and y is congruent

congruent to x, i.e., $xRy \Rightarrow yRx$. Hence, the relation is

to z, then x is congruent to z. Thus, xRy and $\Rightarrow xRz$.

 $x \in T$ is congruent to itself, xRx is true for all x. Hence,

the relation of congruence is an equivalence relation.

The symbol \sim is used for an equivalence relation.

relation on T. Example:

Example: Definition: Let m be a positive integer. If a and b are integers, then

The relation is similar to is an equivalence relation in the set T of all triangles in a plane. m divides a-b i. e., a-b is a multiple of m.

The relation is congruent modulo m is an equivalence

relation on Z, the set of integers.

a is congruent to **b** modulo **m** return as $a \equiv b \pmod{m}$, if

Thus, the relation of congruence in T is an equivalence The relation is parallel to is an equivalence relation in the set L of all lines in a plane.

Functions

Learning Objectives:

functions as relations To study the composite functions

To define a function from a set into another set and to view

- AND
- To solve the related problems
- The terms map, mapping, transformation are also used as

tradition. Suppose that to each element of a set A we assign a unique element of a set B; the collection of such assignments is called a function from A to B. The set A is

alternative names for the function. The choice of which

word is used in a given situation is usually determined by

called the *domain* of the function, and the set B is called

the *co-domain*. Let f denote a function from A to B. Then we write $f: A \to B$ which is read: f is a function from A into B, or f maps A

$$f\colon A o B$$
 which is read: f is a function from A into B , or f maps A into B .

Suppose $f\colon A o B$ and $a\in A$. Then $f(a)$, read " f of a ",

will denote the unique element of B which f assigns to a. This element f(a) in B is called the *image* of a under f or the value of f at a. We also say that f sends or maps a

into f(a). The set of all such image values is called the

range or image of f, and it is denoted by Ran(f), Im(f)

or f(A). That is, $Im(f) = \{f(a) | a \in A\}$ Clearly, $Im(f) \subseteq B$.

which sends each real number into its square. We may describe this function by $f: \mathbf{R} \to \mathbf{R}$ as $f(x) = x^2$. Here, x is called a *variable* of the function f.

 $f^{-1}(B') = \{a \in A | f(a) \in B'\}$ We call f(A') the *image of* A', and we call $f^{-1}(B')$ the inverse image or pre- image of B'. Example:

The figure below defines a function f from $A = \{a, b, c, d\}$

$$A$$
 B

The image of f is the set $\{r, s, u\}$. We note that t does

f(a) = s, f(b) = u, f(c) = r, f(d) = s

not belong to the image of f because t is not the image of any element of A under f. **Identity Function** Consider any set A. Then there is a function from A into Awhich sends each element of A into itself. It is called the *identity function on A* and it is usually denoted by I_A . In other words, the identity function $I_A:A o A$ is defined by

 $I_A(a) = a$ for every element $a \in A$.

Functions as Relations

rise to a relation from A to B called the *graph* of f and defined by Graph of $f = \{(a, b) | a \in A, b = f(a)\}$

Two functions $f: A \to B$ and $g: A \to B$ are defined to be

equal, written f = g, if f(a) = g(a) for every $a \in A$;

that is, if they have the same graph. Accordingly, we do

the graphs of several functions in a future module.

not distinguish between a function and its graph. We study

Now, such a graph relation has the property that each $a \in A$

There is another point of view from which functions may

be considered. First of all, every function $f: A \to B$ gives

(i.e., a subset of
$$A \times B$$
) such that each $a \in A$ belongs to a unique ordered pair (a,b) in f .
The defining condition of a function, that each $a \in A$

 $B = \{s, u, r\} : f = \{(a, s), (b, u), (c, r), (d, s)\}.$ Ascertain whether this is a function. Solution: The given relation is a function $f: A \to B$ with the domain

member of A appears as the first coordinate in exactly one

 $A = \{a, b, c, d\}$ and the range = $\{s, u, r\}$, since each

Example: Consider the following relations on the set

 $h = \{(1,3), (2,1), (1,2), (3,1)\}$

The relation f is a function from A into A, since each

ordered pair in f; here f(1) = 3, f(2) = 3, f(3) = 1.

member of A appears as the first coordinate in exactly one

 $f = \{(1,3), (2,3), (3,1)\},\$

Ascertain whether each relation is a function.

 $g = \{(1,2), (3,1)\},\$

ordered pair in f.

 $A = \{1,2,3\}.$

Solution:

appears as the first coordinate of two distinct ordered pairs in h, (1,3) and (1,2). If h is to be a function it cannot assign both 3 and 2 to the element $1 \in A$.

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

polynomial function. Since R is an infinite set, the graph of

such a function can be drawn by first plotting some of its

 $f(x) = x^2 - 2x - 3$ is obtained by plotting the following

0

.3

1

4

2

3

3

points and then drawing a smooth curve through them.

-1

0

points and then drawing a smooth curve through these

where a_0 , a_1 , ..., a_n are real numbers. This is called a

Consider the function $f: \mathbb{R} \to \mathbb{R}$ of the form

points. For example, the graph of

x

f(x)

("f circle g") is defined by

second.

f(x)

-2

5

The relation h is not a function from A into A since $1 \in A$ Polynomial function

Graph of $f(x) = x^2 - 2x - 3$

The relation of
$$f\circ g$$
 to g and f .

To evaluate the composite function $(f\circ g)(x)$, we first

find g(x) and second find f(g(x)). To evaluate the

composite function $(g\circ f)$, we reverse the order, finding

f(x) first and then g(f(x)). The domain of $(g \circ f)$ is the

set of numbers x in the domain of f such that f(x) lies in

 $(g \circ f)(x)$ b) $(f \circ f)(x)$

Composite

Solution:

d) $(g \circ g)(x)$

the domain of g.

a) $(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$ $[-1, \infty)$

Domain

b) $(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$ [0, \infty]

d) $(g \circ g)(x) = g(g(x)) = g(x) + 1$ =(x+1)+1

Frequently, a function can be expressed by means of a mathematical formula. For example, consider the function which sends each real number into its square. We may describe this function by
$$f\colon R\to R$$
 as $f(x)=x^2$. Here, x is called a $variable$ of the function f . Suppose $f\colon A\to B$. If A' is a subset of A , then $f(A')$ denotes the set of images of elements in A' ; and if B' is a subset of B , then $f^{-1}(B')$ denotes the set of elements of A each, whose image belongs to B' . That is,
$$f(A')=\{f(a)|a\in A'\} \text{ and } A' \text{ and }$$

into $B = \{r, s, t, u\}$

Consequently, one may equivalently define a function as follows:
 Definition: A function
$$f: A \to B$$
 is a relation from $A \ to \ B$

belongs to a unique ordered pair (a, b) in the relation.

The relation
$$g$$
 is not a function from A into A since $2 \in A$ is not the first coordinate of any pair in g and so g does not assign any image to 2 .

The relation h is not a function from A into A since $1 \in A$ appears as the first coordinate of two distinct ordered

Graph of
$$f(x) = x^2 - 2x - 3$$

Composite Functions

Composition is a method for combining functions. If f and

 $(f\circ g)(x)=f\big(g(x)\big)$

The domain of $f \circ g$ consists of the numbers x in the

The definition says that two functions can be composed

domain of g for which g(x) lies in the domain of f.

when the range of the first lies in the domain of the

fog

g are functions, the composite function $f\circ g$

The functions
$$f\circ g$$
 and $g\circ f$ are usually quite different.
 Example If $f(x)=\sqrt{x}\ and\ g(x)=x+1$, find a) $(f\circ g)(x)$ b) $(g\circ f)(x)$

c)
$$(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{\frac{1}{4}} [0, \infty)$$

d) $(g \circ g)(x) = g(g(x)) = g(x) + 1 (-\infty, \infty)$

= x + 2

1.3. Types of Functions

Learning Objectives:

function.

function.

that f(a) = b. That is,

To define a one-one function, an onto function and the

- inverse of a function To study geometrical characterization of one-one and onto
- functions $f: \mathbf{R} \to \mathbf{R}$ AND · To practice the related problems
- A function $f: A \rightarrow B$ is said to be **one-to-one** if distinct

elements in the domain A have distinct images. In other words, f is one-to-one if $f(a) = f(a') \Rightarrow a = a'$

Example: If
$$A = \{4,5,6\}$$
, $B = \{a,b,c,d\}$ and if $f: A \to B$ such that $f = \{(4,a),(5,b),(6,c)\}$ then f is one-to-one.

Example: The mapping $f: \mathbf{R} \to \mathbf{R}$ such that $f(x) = x^2$ is not a one-to-one function, since f(-2) = 4 and f(2) = 4,

that is, two distinct elements -2 and 2 have the same

image 4. If a function $f: A \to B$ is such that two or more elements $a_1, a_2 \dots$ of A have the same f-image in B, then the mapping is called many-to-one mapping or many-to-one

is such that $f = \{(a, 1), (b, 1), (c, 1), (d, 2), (e, 2)\}$ then the function is many-to-one. A function $f: A \rightarrow B$ is called an **onto** function if every element of B is the image of at least one element of A. For

every $b \in B$ there exist at least one element $a \in A$ such

Example: If $A = \{a, b, c, d, e\}, B = \{1, 2, 3\}, \text{ and if } f: A \to B$

f is onto if $\forall b \in B$, $\exists a \in A$ such that f(a) = bIn such a case, we say that f maps A onto B (Here the symbol \forall means for every, and \exists means there exist). If $f: A \to B$ is not an onto function, that is, some of the elements of B remain unused, then f is called an **into**

not onto since the negative numbers in the co-domain are not used. Similarly, $f(x) = x^2$ is also not onto. If $f: A \to B$ is both one-to-one and onto, then f is called a *one-to-one correspondence* between A and B. This

terminology comes from the fact that each element of A

will correspond to a unique element of B and vice versa.

Example: The function $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = |x| is

We also use the term *injective* for a one-to-one function, surjective for an onto function, and bijective for a one-toone correspondence. **Example:** For the function $f: \mathbb{R} \to \mathbb{R}$ defined by

(a) onto (b) many-to-one (c) one-to-one and into

 $f(x) = e^x$, which of the following is true.

(d) many-to- one and onto

Answer is (c).

function.

 f_1

one-to-one nor onto.

Solution: Let $x_1, x_2 \in \mathbf{R}$, $f(x_1) = f(x_2) \Rightarrow e^{x_1} = e^{x_2} \Rightarrow x_1 = x_2;$ Therefore, f is one - one. Notice that e^x is always positive, i.e., the negative real numbers and zero have no preimages. Therefore, f is into.

relation f^{-1} is a function from B to A. Equivalently, $f: A \to B$ is **invertible** if there exists a function $f^{-1}: B \to A$, called the **inverse** of f, such that $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$

In general, an inverse function f^{-1} need not exist or,

equivalently, the inverse relation f^{-1} may not be a

A function $f: A \to B$ is said to be *invertible* if its inverse

 f_2

The function f_1 is one-to-one since no element of B is the

image of more than one element of A. It is not onto since

The function, f_2 is one-to-one and f_2 is onto, since every

element of C is the image of some element B under f_2 .

Further, f_3 is not one-to-one but onto and f_4 is neither

 $3 \in B$ is not the image of any element of A under f_1 .

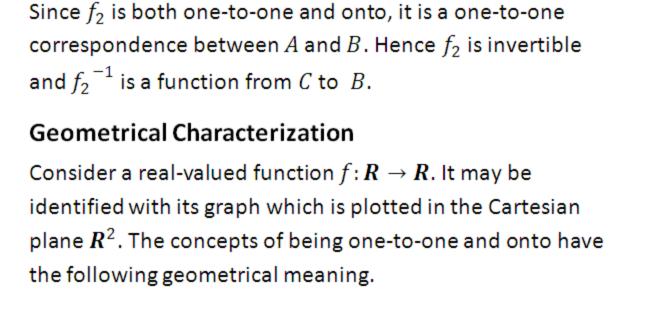
 f_3

 f_4

E

D

Theorem: A function $f: A \rightarrow B$ is invertible if and only if fis both one-to-one and onto. **Example:** Consider functions $f_1: A \to B$, $f_2: B \to C$, $f_3: C \to D$, $f_4: D \to E$ defined in the figure below.



One-to-one means that there are no two distinct

point (Horizontal line test).

graph of f at least once.

pairs (a_1,b) and (a_2,b) in f; hence each horizontal

line in ${\it I\!\!R}^2$ can intersect the graph of f in at most one

Onto means that for every $b \in R$ there is at least one

point $a \in \mathbf{R}$ such that (a, b) belongs to the graph of f;

hence each horizontal line in ${m R}^2$ must intersect the

in \mathbb{R}^2 will intersect the graph of f in exactly one point. **Example:** Consider the following four functions from Rinto R whose graphs are shown below. $f_1(x) = x^2, f_2(x) = 2^x, f_3(x) = x^3 - 2x^2 - 5x + 6,$ $f_4(x) = x^3$

Accordingly, the function $f: \mathbf{R} \to \mathbf{R}$ is one-to-one and onto

(and therefore invertible) if and only if each horizontal line

 $f_3(x) = x^3 - 2x^2 - 5x + 6$ $f_4(x) = x^3$ $f_1(x) = x^2$ $f_2(x) = 2^x$

Sometimes, we restrict the domain and co-domain of a function f in order to obtain an inverse function f^{-1} . For

example, suppose we restrict the domain and co-domain

of the function $f_1(x) = x^2$ to be the set D of nonnegative

real numbers. Then f_1 is one-to-one and onto and its inverse is the square root function, that is, $f_1^{-1}(x) = \sqrt{x}$

the graph of f_1 at all; hence f_1 is neither one-to-one nor onto. Similarly, f_2 is one-to-one but not onto, f_3 is onto but not one-to-one, and f_4 is both one-to-one and onto. The inverse of f_4 is the cube root function, that is, $f_4^{-1}(x) = \sqrt[3]{x}$

There are horizontal lines which intersect the graph of f_1 twice and there are horizontal lines which do not intersect

NOTE: